
DevOps-Continuous Integration and Continuous Delivery

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)

Continuous Integration and Continuous Delivery using

Devops
IV Year I Semester (R20)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DevOps-Continuous Integration and Continuous Delivery

Vision of the Department

The Computer Science & Engineering aims at providing continuously stimulating educational

environment to its students for attaining their professional goals and meet the global challenges.

Mission of the Department

 DM1: To develop a strong theoretical and practical background across the computer science

discipline with an emphasis on problem solving.

 DM2: To inculcate professional behaviour with strong ethical values, leadership qualities,

innovative thinking and analytical abilities into the student.

 DM3: Expose the students to cutting edge technologies which enhance their employability and

knowledge.

 DM4: Facilitate the faculty to keep track of latest developments in their research areas and

encourage the faculty to foster the healthy interaction with industry.

Program Educational Objectives (PEOs)

 PEO1: Pursue higher education, entrepreneurship and research to compete at global level.

 PEO2: Design and develop products innovatively in computer science and engineering and in other

allied fields.

 PEO3: Function effectively as individuals and as members of a team in the conduct of

interdisciplinary projects; and even at all the levels with ethics and necessary attitude.

 PEO4: Serve ever-changing needs of society with a pragmatic perception.

PROGRAMME OUTCOMES (POs):

PO 1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

PO 2

Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO 3

Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

PO 4

Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

PO 5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

PO 6

The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

DevOps-Continuous Integration and Continuous Delivery

PO 7

Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO 8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO 9
Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

PO 11

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

PO 12

Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO

1

The ability to apply Software Engineering practices and strategies in software project

development using open-source programming environment for the success of

organization.

PSO

2

The ability to design and develop computer programs in networking, web applications

and IoT as per the society needs.

PSO

3
To inculcate an ability to analyze, design and implement database applications.

DevOps-Continuous Integration and Continuous Delivery

DevOps-CICD

(Continuous Integration and Continuous Delivery)

CONTENTS
Context...

Exercise 1: Testing lab setup

Exercise 2: Git operations

Exercise 3: Creating a project in SonarQube

Exercise 4: Using Sonarqube with Sonar-Runner

Exercise 5: Creating a local repository in Artifactory

Build Automation: Maven

Exercise 6: Build automation using Maven

Continuous Integration: Jenkins

Exercise 7: Jenkins Installation & System Configuration

Exercise 8: Download the plugins in Jenkins

DevOps-Continuous Integration and Continuous Delivery

Exercise 9: Creating Central CI pipeline

Exercise 10: Copying and Moving Jobs

Exercise 11: Creating pipeline view in Jenkins

Exercise 12: Configuring Gating Conditions

Additional Exercises

1. Adding custom rules to SonarQube

2. Static program analysis using SonarLint

3. Binding SonarQube rules to SonarLint

DevOps-Continuous Integration and Continuous Delivery

Context
This document contains exercises and activities that would be done during

the lab practice of DevOps. This would provide hands on experience on the

concepts and help the participants create pipelines using open source tool

stack.

Application Used:

A simple web application using Maven.

Tools that would be used:

• Eclipse – Integrated development environment

• JUnit – Unit testing of code

• Jenkins – Continuous integration server

• Git- Source code management

• Jenkins – Build Automation

• SonarQube- Source code quality management

• JaCoCo – Code coverage

NOTE:

• For performing the exercises below, participants must have the setup of

thetools mentioned.

• The screenshots provided are illustrative, based on your system setup,

thecontents may change.

Exercise 1: Testing lab set up

Step 1:Open the System Environment Variables by right-click on

This PC -> Properties -> Advanced System Settings -> Environment

Variables..

Add the following as System Variables if not added already:

o JAVA_HOME = path to jdk folder (C:\Program Files\Java)

o M2_HOME = path to maven folder (C:\Program Files\Maven)

o PATH = add “%JAVA_HOME%/bin; %M2_HOME%/bin; <path to

sonar-runner>\sonar-runner-2.4\bin;” to the existing path variables.

DevOps-Continuous Integration and Continuous Delivery

Step 2:Start all the installed tools by executing the appropriate batch file.

Step 3:you can ensure all are working by accessing tools user interface with

belowmentioned URL’s and credentials.

1. http://localhost:8080 – – SonarQube [admin/admin]

2. http://localhost:8080 – Tomcat [tomcat/s3cret]

3. http://localhost:8064/jenkins - Jenkin

Summary:You have tested lab set up for the forthcoming exercises for

Jenkins.

Exercise 2: Git operations
Objective: Perform the basic operations on Git repositories using EGit

(Eclipseplugin).

Pulling code from Git repository

Step 1:Go to Eclipse-> file->import->git->Projects from git->clone uri -

>enter central repository details -> use credentials.

Click Next -> and choose branch (sample shown below)

http://localhost:8080/
http://localhost:8080/
http://localhost:8064/jenkins

DevOps-Continuous Integration and Continuous Delivery

->Click next->browse directory to keep local repository as shown below->

->Next ->Choose first option as shown below->click Next->

DevOps-Continuous Integration and Continuous Delivery

->Click Next -> click Finish->you can observe project explorer view with

projectcloned as shown below->. The name of the project is

JNTU_Calc_Application in yourcase.

Note:Commit Changes from Eclipse to Local Git Repository

Step 1: Expand the project cicd-calculator-> go to

src\main\webapp\index.jsp ->make some changes to the code and save the

changes->you can observe “>”symbol on project and edited source file as

shown below.

DevOps-Continuous Integration and Continuous Delivery

Step 2:Right click on project->team->commit->drag the files from

UnstagedChanges to Staged Changes ->Enter appropriate comments for the

commit asshown below->

->click on Commit->you can observe the “>” symbol disappearing.

Note: similar way, we can commit multiple individual changes to local

repository using commit option.

DevOps-Continuous Integration and Continuous Delivery

Push Changes from Local Git Repository (associated with Eclipse) to

Remote Git Repository.

Step 1:Right click on project->team-> click on Push to upstream -> you can

seechanges successfully pushed from local repository to central repository

as shown below.

Note: Your repository name and number may be different, this is an

illustration

Note:if push results to “non fast forward” rejection, perform below

mentioned operations in sequence.(This is due to the fact that there has been

more changes made possibly by other developers to the central Git

repository and hence those changes need to be merged before committing

the changes)

Fetch from upstream->merge with local branch ->resolve if there are any

merge conflicts->commit-> push.

You can observe the revision history using project->team->”Show In

History “as shown below.

DevOps-Continuous Integration and Continuous Delivery

Pull Changes from Remote Git Repository to Local Git

Repository (associated with Eclipse).

Assumption: A team member has committed three changes to remote

repository.

Step 1:Right click on project->team->Pull->enter credentials if required-

>you can observe fetch result and merge input see as shown below.

Note: Pull perform two actions in sequence, Fetch and Merge. So if there

are any merge conflicts after pull operation, you have to resolve and

commit again.

You can observe the updated revision history using project->team->”Show

in History”. Pull the project from remote Git repository to local Eclipse

DevOps-Continuous Integration and Continuous Delivery

work space using EGit. Practice the following commands-

a. Commit and push operations

b. Fetch operation

c. Merge operation with and without conflicts. When there is a conflict,

resolve the conflict and push the code back to the branch provided.

Note: Perform commit, and push operations on remote Git repository by

makingsome changes to source code. You can use the repository provided

in the earlierdemo for completing this exercise.

Creating branches on local repository from eclipse via e-git plugin:
Step 1:Right click on the Project in the Project Explorer and go to Teams ->

Switchto -> New Branch...

Step 2:The parent branch will by default be that branch that is currently

open inEclipse, you can also change it by clicking on the Select option.

Step 3:Name the New Branch and check on the Check out as new branch if

youwould like to switch to the new branch as well. Click on Finish.

Summary: You have learnt to do basic operations with Git related to version

controlin this exercise.

Exercise 3: Creating a project in SonarQube

Objective: Understand creation of project in Sonarqube.
Step 1:Go to SonarQube URL and login with credentials: admin: password.

Step 2:Click on the manually option on the SonarQube dashboard as shown

in the screenshot given below.

DevOps-Continuous Integration and Continuous Delivery

Step 3:Enter the project display name and project key as calculator as

shown in the screenshot given below and click Set Up.

Step 4:Click on Locally option as shown in the screenshot given below.

Step 5:Click on the Generate option as shown in the screenshot given

below.

DevOps-Continuous Integration and Continuous Delivery

Step 6:You can see the token generated as shown in the screenshot given

below. Click on continue.

Note: Copy the token and save it somewhere on your system. It cannot be

retrieved later.

Step 7:Select Maven under the run analysis on your project as shown in the

screenshot given below.

Step 8:Paste the copied token in the pom.xml within the <sonar. Login> tag

as shown in the screenshot given below.

DevOps-Continuous Integration and Continuous Delivery

Summary: You have learnt to create a project in sonarqube in this exercise.

Exercise 4: Using Sonarqube with Sonar-Runner.
Objective: Understand running of Sonarqube using Sonar-Runner

command-line tool.

Step 1: Start Sonar server by using the appropriate bat file.

Once started, you should see success message in console window:

Go to SonarQube server dashboard at http://localhost:9000 and login

usingadmin/admin

Step 2: Go to conf folder of Sonar Runner. Make the following changes

based on the name of the Project provided to you and the path where it

exists in your system:

http://localhost:9000/

DevOps-Continuous Integration and Continuous Delivery

Open command prompt inside the project src folder in File Explorer and run

the following command.

Once execution is successful:

a) Observe the static code analysis report and critical issues on SonarQube

dashboard. Select your project name from list of projects to view the latest

report.

b) Resolve the technical issues in code and rerun the Maven build. Notice

the changes to the technical debt value.

Run the build file and observe the results.

DevOps-Continuous Integration and Continuous Delivery

Summary of this Exercise:

You have learnt to observe the results of static code analysis using

Sonarqube.

Exercise 5: Creating a local repository in Artifactory
Objective: Understand creation of local repository in Artifactory

Step 1: Go to Artifactory URL and login with credentials: admin:

Password1!

Step 2: Go to Administration -> Repositories -> Repositories -> Add

repositories ->Local Repository.

Step 3: Select the package type as Maven
Step 4: To add the repository key, go to pom.xml and copy the <name> tag

value(Calc_Dev_Snapshot) as shown in the screenshot given below.

Step 5: Click on Create Local Repository.

Step 6: You can view the binaries stored in the Artifactory under

Application ->Artifactory -> Packages.

Summary: You have learnt to create a local repository in Artifactory in this

exercise.

DevOps-Continuous Integration and Continuous Delivery

Build Automation: Maven
Exercise 6: Build automation using Maven
Objective: Understand build automation by writing a script in Maven with

goals to invoke activities in a CI pipeline.

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

You can also find the results of the maven goals executed in the target

folder of your project:

1. JUnit test reports in xml and txt: sure fire-reports folder

2. Jacoco code coverage reports in html and xml: Under site/Jacoco/

3. War file.

DevOps-Continuous Integration and Continuous Delivery

Summary of this Exercise: You have learnt to use Maven tool for build

automation.

Continuous Integration: Jenkins
Exercise 7: Jenkins Installation & System

Configuration.
Objective: Configure Jenkins for CI
Note:

You can install Jenkins in two ways on Windows –

a. Install Jenkins as a Windows service

b. Use webserver with a servlet container like Glass Fish or Tomcat,

and then deploy Jenkins. War to it.

We have used the first approach in this exercise.

Configuring Jenkins

Step 1: Start the Jenkins server and enter URL

http://localhost:8064/jenkins in browser.

Additional configurations

1. Provide the tool configuration (JDK, Maven) in the Manage Jenkins -

>Global Tool configuration tab.

http://localhost:8064/jenkins

DevOps-Continuous Integration and Continuous Delivery

2. Go to global properties
(Manage Jenkins->Configure system->Global properties->environment

variables) and set JAVA_HOME and M2_HOME to the respective machine

path.

Summary of this Exercise:

You have learnt to configure Jenkins.

Exercise 8: Download the plugins in Jenkins
Objective: Download the plugins in Jenkins

Step 1: Go to Jenkins URL

Step 2: Go to Manage Jenkins -> Manage Plugins from the Jenkins

dashboard

Step 3: Under the available tab of plugins manager search for the copy

artefact plugin and check the check box as shown in the screenshot given

below.

DevOps-Continuous Integration and Continuous Delivery

Step 4: Repeat the step – 3 and select the below mentioned plugins and

click on install without restart.

a. Jacoco

b. Artifactory

c. Build pipeline

d. Deploy to container

Summary: You have learnt to download plugins in Jenkins in this exercise.

Exercise 9: Creating Central CI pipeline
Objective: Creating main line CI pipeline

Create a new Folder item with name “Central_CI” using “New Item” option

as shown below. Add jobs of type Freestyle Project for each of tasks needed

in the the continuous integration pipeline.

DevOps-Continuous Integration and Continuous Delivery

Step 1:Create below mentioned job – Setup

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Step 2:Create below mentioned job – Compile

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Step 3:Create below mentioned job – Unit test

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Step 4: Create below mentioned job – Code coverage

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Step 5: Create below mentioned job – Static analysis

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Step 6: Create below mentioned job – war

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Step 7: Create below mentioned job – To Artifactory

DevOps-Continuous Integration and Continuous Delivery

Step 8: Create below mentioned job – SmokeTest

DevOps-Continuous Integration and Continuous Delivery

Summary: You learned main line CI pipeline creation.

Exercise 10: Copying and Moving Jobs
I. Copying Jobs:
Step 1: Click on the option of New Item from the left panel.
Step 2: Name the new job and enter the name of the job you wish to copy
below as shown:

Step 3: Click on OK and observe the newly copied job.

II. Moving Jobs:
Step 1: Enter the folder which has the jobs that need to be moved to a new
location.

DevOps-Continuous Integration and Continuous Delivery

Step 2: Click on the option of Move from the left panel.
Step 3: Enter the location where you wish to move the jobs to, as shown
below.

Step 4: Click on Move and observe the newly moved jobs in that location.
Estimated Time: 20 mins
Summary: You learned how to copy and move jobs on Jenkins.

Exercise 11: Creating pipeline view in Jenkins
Objective: Understand creation of pipeline view in Jenkins
Step 1: Click on the ‘+’ symbol under the Jenkins project folder as shown in the
screenshot given below

Step 2: Provide the name for the pipeline in the viewname field and select the
Build Pipeline View and click create as shown in the screenshot given below.

Step 3: Select calculator->Setup as the Select Initial Job under the
Upstream/downstream config as shown in the screenshot given below and
click
ok.

DevOps-Continuous Integration and Continuous Delivery

Exercise 12: Configuring Gating Conditions
Objective: Configure gating conditions in Jenkins.

Apply gates in the tool
Gating condition in Static Analysis job:
Step 1: Start “SonarQube” server if not started earlier.

Step 2: To create quality gate in SonarQube log into SonarQube
(http://localhost:9000) as admin (username and password is admin) ->

http://localhost:9000/

DevOps-Continuous Integration and Continuous Delivery

Note: this plugin causes Maven target failure, because of quality gate violation
Step 5: Choose the first option as shown below in Jenkins job configuration to
link with downstream job in the pipeline.

Step 4: Modify any one of the testcases to get fail as shown in the screenshot
given below.

DevOps-Continuous Integration and Continuous Delivery

Here is a summary of the activities to be done
a) Open SonarQube (http://localhost:9000). Add gating conditions as learnt in
the demos. Give values so that you can observe a broken and a smooth build.
b) Trigger a build in Jenkins and observe the gating condition in SonarQube
working.

http://localhost:9000/

DevOps-Continuous Integration and Continuous Delivery

c) Trigger a build in Jenkins and observe the gating condition in JaCoCo
working.
d) Configure the threshold values for unit testing in Jenkins. Make changes to
the unit tests (so that some of them fail) and observe the gating conditions
failing in Jenkins. Correct them and observe that the build becomes stable.
(when changes are being made, commit the test code from Eclipse).
Summary of this Exercise:
You have learnt apply gating conditions to ensure code quality and tests pass
in every build.

Additional Exercises
1. Adding custom rules to SonarQube
Objective: Add custom rules to Sonarqube
Requirements: SonarQube 5.6 and above

Step 1: Run the StartSonar.bat file as admin.

Creating the custom rule
Rule to be created:
Avoid single parameter in methods. Here are the parameters:
1. name: Avoid usage of single parameter
2. Description: This rule expects methods to have at least two parameters
3. This is a coding guideline
4. Priority is MAJOR
Add this rule to Sonarqube and check the same using the calculator
workspace
provided
Hint: Use method.parameters().size() to check the number of parameters in a
method Estimated time: 30 mins
Summary: You have learnt to customize the rules in SonarQube according to
your requirement for quality analysis.

2. Static program analysis using SonarLint
Objective: Perform static program analysis during coding using SonarLint
plug-in to Eclipse IDE.
SonarLint is a plug-in to an IDE that provides on the fly feedback to developers
on new bugs and quality issues injected into their code.
Installing the SonarLint plug-in
Step 1: Go to Eclipse IDE and select a workspace.
Step 2: Import the project JNTU_Calc_Application provided and switch to

DevOps-Continuous Integration and Continuous Delivery

JAVA EE perspective.
Step 3: Now open the calculator.java file from ‘src/main/java’ package

DevOps-Continuous Integration and Continuous Delivery

A new tab opens below which shows the issues found in the current java file
selected.

Step 2: Navigate to Windows>Show view>other. Here select
SonarLint>SonarLint Rule Description.

DevOps-Continuous Integration and Continuous Delivery

A new empty SonarLint Rule Description tab opens. Now select one of the
issue in the SonarLint On-the-fly tab and switch to SonarLint Rule Description
tab. This suggests the necessary changes to be made in the code to retain the
quality of the code.

Estimated time: 20 mins
Summary: You have learnt the static code analysis using SonarLint in this
exercise

DevOps-Continuous Integration and Continuous Delivery

3. Binding SonarQube rules to SonarLint
Objective: Customize the rules used by SonarLint through SonarQube web
server interface.
Requirements: SonarQube 5.6 and above
Step 1: Run the StartSonar.bat file as admin.
Step 2: In the project imported in the previous exercise, run the pom.xml as
Maven build.

In the Goals tab, use clean, compile and sonar: sonar and execute the
pom.xml file.

Step 3: Go to Window->Show View->Other.

DevOps-Continuous Integration and Continuous Delivery

Select SonarLint->SonarQube Server.

This opens a SonarQube Servers tab below. Click on the Connect to a
SonarQube Server option showing up in the tab.

DevOps-Continuous Integration and Continuous Delivery

DevOps-Continuous Integration and Continuous Delivery

Prepared By:

Mr.P. Nagababu

Assistant Professor

CSE Dept

